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Abstract

The electrical activity in the heart is modeled by a complex, nonlinear, fully coupled system of differential equations.
Several scientists have studied how this model, referred to as the bidomain model, can be modified to incorporate the effect
of heart infarctions on simulated ECG (electrocardiogram) recordings.

We are concerned with the associated inverse problem; how can we use ECG recordings and mathematical models to
identify the position, size and shape of heart infarctions? Due to the extreme CPU efforts needed to solve the bidomain
equations, this model, in its full complexity, is not well-suited for this kind of problems. In this paper we show how bio-
logical knowledge about the resting potential in the heart and level set techniques can be combined to derive a suitable
stationary model, expressed in terms of an elliptic PDE, for such applications. This approach leads to a nonlinear ill-posed
minimization problem, which we propose to regularize and solve with a simple iterative scheme.

Finally, our theoretical findings are illuminated through a series of computer simulations for an experimental setup
involving a realistic heart in torso geometry. More specifically, experiments with synthetic ECG recordings, produced
by solving the bidomain model, indicate that our method manages to identify the physical characteristics of the ischemic
region(s) in the heart. Furthermore, the ill-posed nature of this inverse problem is explored, i.e. several quantitative issues
of our scheme are explored.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Millions of people in the Western world suffer from heart infarctions. The purpose of this paper is to
explore the possibilities for using modern computers and mathematics to detect this disease. We will investi-
gate whether the position, size and shape of heart infarctions can be computed from ECG measurements.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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More specifically, our aim is to develop a suitable mathematical framework, expressed in terms of an inverse
problem for a scalar partial differential equation (PDE), for doing so.

Ischemia, a precursor of heart infarction, is caused by an occlusion of one, or more, of the coronary arteries
supplying blood to the myocardium. Consequently, the heart will not receive an adequate amount of blood
and oxygen. If this condition persists, it may result in the death of the heart tissue, i.e. in an infarction. An
ischemia may thus be viewed upon as a mild and reversible form of an infarction. We will throughout this
paper, for the sake of convenience, use these two terms synonymously.

The electrical activity in the human body is usually modeled by the bidomain equations. This model con-
sists of a nonlinear, fully coupled system of ordinary and partial differential equations. It is fairly easy to mod-
ify this framework to incorporate the effect of an infarction on the electrical field in the human body, see
[3,4,26,32,34,35] for details. However, this complex system of equations is very hard to solve, and the simu-
lation of the changes in the electrical potential throughout a single heart beat typically requires hours of com-
putations, even on state-of-the-art parallel computers [33,36]. In the process of solving the associated inverse
problem, i.e. the task of determining the physical characteristics of an ischemia from body surface measure-
ments of the potential, the direct problem must be solved several times. This makes the traditional bidomain
model unsuited for this kind of applications.

The purpose of the present paper is to show how biological knowledge about the transmembrane potential
during rest (in the heart cycle) can be combined with level set techniques to define an efficient algorithm for
computing the position and size of a myocardial infarction. It turns out that such an approach leads to a non-
linear minimization problem subject to a constraint defined in terms of a scalar elliptic PDE. Simulations per-
formed with synthetic ECG data in 2D, on a standard modern laptop, indicate that the ischemic region can be
identified within less than 3 min with this approach.

Several scientists have analyzed inverse problems arising in connection with ECG recordings. In particular,
the challenge of how to compute the epicardial potential, i.e. the potential at the surface of the heart, based on
body surface measurements has received a lot of attention, see [7,12,24,29] – to mention a few. The goal of
such studies is to obtain a deeper understanding of this organ, including abnormal behavior due to some sort
of illness. This approach, which will be referred to as the classical inverse ECG problem, has also, to some
extent, been used to study ischemic heart disease [16,25]. More precisely, the presence of heart infarctions will
in many cases be revealed through so-called ST shifts in the potential at the heart surface. Further details
about this issue can be found in [14,23].

In many ways, our work is related to the results presented for the classical problem. However, from a math-
ematical and computational point of view, our approach is fundamentally different: Instead of seeking for
indirect indications, for example in terms of ST shifts, of ischemic heart disease, we aim at directly computing
the location and size of the infarction. That is, the unknowns in our framework are not the potential at specific
locations at the heart surface, but parameters describing the physical characteristics of the ischemia itself. The
mathematical formulations and properties, and consequently the applicability, of our framework is therefore
fundamentally different from those of the classical inverse ECG problem.

As far as we know, Santosa [30] was the first researcher to apply level set methods to inverse obstacle
problems. Throughout the last decade, such techniques have been applied to a wide range of applications
of this kind; a nice survey is presented in [2]. Recently, this methodology has also been used to analyze
inverse problems arising in connection with ECG recordings: In [21] a pilot study of how to use level
set techniques to detect ischemic heart disease was discussed in terms of the so-called monodomain model,
and [11] explains how the activation sequence at the heart surface may be computed in terms of level set
techniques. The main purpose of the present paper is to derive a numerical method for automatically
detecting ischemia and infarctions based on ECG-recordings. The actual implementation is described
and prototypical numerical illustrations are provided. Further examples pursing biological issues are pre-
sented in [22].

This paper is organized as follows: The stationary forward model, including a discussion of how to use level
set techniques to incorporate the effect of an ischemia, is presented in Section 2. Section 3 is devoted to the
associated inverse problem, along with our main result; Algorithm 3.1. The performance, including important
stability properties, of our scheme is studied through a series of numerical experiments in Section 4, and some
concluding remarks are given in Section 5.
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2. The forward model

As mentioned above, the electrical activity in the heart is modeled by the bidomain equations:
os
ot
¼ F ðs; vÞ in H ; ð1Þ

vCvt þ vIðs; vÞ ¼ r � ðM irvÞ þ r � ðM irueÞ in H ; ð2Þ
r � ðM irvÞ þ r � ððM i þM eÞrueÞ ¼ 0 in H ; ð3Þ
where (1) represents a system of ordinary differential equations (ODEs) and (2), (3) defines two partial differ-
ential equations (PDEs). Here, v and ue denote the transmembrane and extra-cellular potentials, respectively,
and H the physical domain occupied by the heart. The intra- and extra-cellular conductivity tensors Mi and
Me are typically defined in terms of symmetric and positive definite matrices depending on the spatial position
x. Furthermore, I is a nonlinear function of both the transmembrane potential v and a state-vector s modeling
the ionic concentrations in the heart. Since (3) will be the focus of this paper, we will not discuss the depen-
dency of the state-vector s any further. The constants v and C represent the area of cell membrane per unit
volume and the capacitance of the cell membrane, respectively.

The bidomain equations (2) and (3) was introduced by Tung [37], and has been studied by several scientists,
see [15,18,27,35] and references given therein. Many models for the cell-dynamics (1) have been proposed
throughout the last three decades, see Beeler and Reuter [1], DiFrancesco [6], Luo and Rudy [19,20] and Win-
slow et al. [38].

In addition to (1)–(3), an equation governing the electrical potential in the remaining part of the body, i.e.
outside the heart, must be specified. Furthermore, a set of suitable interface and boundary conditions at the
heart and body surfaces must be included – leading to a complex system of equations. We will briefly return to
these issues below.

As mentioned in the Introduction, in order to solve an inverse problem, the associated direct problem must
typically be solved many times with different input parameters. The numerical computation of v,ue and s from
(1)–(3) is extremely CPU demanding, see [36] for details. The bidomain model is thus unfortunately not well-
suited for the kind of application we are considering.

We will now show how the bidomain equations and biological knowledge can be combined to obtain a
rather simple stationary model for the extra-cellular potential ue during rest, and how the effect of an ischemia
can be incorporated into this model with level set techniques. The inverse problem will be treated in Section 3.

The key point for deriving a stationary scalar equation for the extra-cellular potential ue is that the trans-
membrane potential v is approximately known throughout the resting state/phase of the heart cycle. More pre-
cisely, v is approximately a piecewise constant function during rest. Furthermore, the properties of v are
depending on whether or not ischemic tissues are present, cf. [3] for further details. Expressed in mathematical
terms, this fact may be formulated as follows: Let t1 be a time instance during the resting state of the heart
cycle. According to lab measurements
v1ðxÞ ¼ vðx; t1Þ �
�60 mV x in ischemic tissue;

�90 mV x in healthy tissue;

�
ð4Þ
see [17]. Consequently, (3) implies that the extra-cellular potential ue at time t = t1 must satisfy
r � ððM i þM eÞrueðx; t1ÞÞ ¼ �r � ðM irvðx; t1ÞÞ in H ; ð5Þ
where v(x, t1) is defined in (4).
Note that (5) only governs the potentials in the heart H. In order to obtain a complete model, an equation

for the electrical activity outside the heart and suitable interface and boundary conditions at the heart and
body surfaces must be specified.

Let B denote the domain, including the heart, occupied by the body, and define
T ¼ B n H ;
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Fig. 1. A schematic of the body B = H [ T. Note that oT = oH [ oB, and that nT = �nH along oH.
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see Fig. 1. Since T is a passive conductor, the electrical activity in this part of the body is governed by an ellip-
tic PDE:
r � ðMoruoÞ ¼ 0 in T ; ð6Þ

where Mo and uo represent the conductivity and potential in T, respectively – see [35] for further details.

Throughout this paper we will assume that the body is insulated, leading to the boundary condition
ðMoruoÞ � nB ¼ 0 along oB; ð7Þ

where nB denotes the outwards directed normal vector of unit length along the body surface oB. Next, the
interface conditions for the potentials v, ue and uo along the heart surface oH are
ue ¼ uo along oH ; ð8Þ
ðM erueÞ � nH ¼ �ðMoruoÞ � nT along oH ; ð9Þ
ðM irvþM irueÞ � nH ¼ 0 along oH ; ð10Þ
see [35] for a discussion of these properties. In (9), nT represents the outer unit normal vector of
oT ¼ oH [ oB;
cf. Fig. 1. Note that nT = �nH along oH, and hence according to (9)
ðM erueÞ � nH ¼ ðMoruoÞ � nH along oH :
The variational form of (5)–(7) and (8)–(10) can be derived in a rather straightforward manner. Let w be a
test function defined on B = H [ T. If we multiply (6) by w, integrate and apply Gauss’ divergence theorem,
we find that
Z

T
rw � ðMoruoÞdx�

Z
oH

wðMoruoÞ � nT ds ¼ 0; ð11Þ
where we have used (7). In a similar manner, it follows from (3) that
Z
H
rw � ðM irvÞdxþ

Z
H
rw � ððM i þM eÞrueÞdx�

Z
oH

wðM irvÞ � nH ds

�
Z

oH
wððM i þM eÞrueÞ � nH ds ¼ 0: ð12Þ
Consequently, adding (11) and (12) and applying the interface conditions (8)–(10) imply that
Z
T
rw � ðMoruoÞdxþ

Z
H
rw � ððM i þM eÞrueÞ ¼ �

Z
H
rw � ðM irvÞdx ð13Þ
for every test function w defined throughout the entire body B.
If we introduce the notation
MðxÞ ¼
M iðxÞ þM eðxÞ for x 2 H ;

MoðxÞ for x 2 T ;

�

and
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uðxÞ ¼
ueðx; t1Þ for x 2 H ;

uoðx; t1Þ for x 2 T ;

�

we thus obtain the following model for the resting potential: Find u 2 V(B) such that
Z

B
rw � ðMruÞdx ¼ �

Z
H
rw � ðM irv1Þdx for all w 2 V ðBÞ; ð14Þ
where v1 = v(x, t1) is (approximately) given in (4). In this formulation,
V ðBÞ ¼ w 2 H 1ðBÞ;
Z

B
wdx ¼ 0

� �
; ð15Þ
where H1(B) denotes the classical Sobolev space of functions defined on the domain B, see for example [9].

Remark I. Since the true membrane potential obeys, at least approximately, (4), it is important to check
whether the bidomain model (1)–(3) generates solutions that satisfy this property. This can be viewed upon as
a part of the validation process for such models. Fig. 2 shows the transmembrane potential v1 during rest
produced by (1)–(3). In this simulation a subendocardial anterior ischemia was incorporated into the
equations by partially removing the ion transport in the ischemic tissue, see [35]. The cell dynamics were
modeled by the method proposed by Winslow et al., see [38]. According to this plot, such models indeed
produce membrane potentials that are consistent with (4) – at least in an approximate sense. Our goal is to
investigate the possibilities for exploiting this property to identify ischemic heart disease. More precisely, to
determine the position and size of an ischemia.

Remark II. The function v1, as approximately defined in (4), is discontinuous along the interface separating the
healthy and ischemic tissues in the heart. In the model (14), the partial derivatives of v1 are present. It is by no
means straightforward to define the derivative of functions of this kind; it represents a subtle mathematical
challenge. On the other hand, from a biological point of view, the border zone between the healthy and dam-
aged tissue should not be represented by a sharp discontinuity in v1. More accurate models include a smooth
transition zone between such regions, see [31]. This is also in agreement with the plot presented in Fig. 2. This
matter will be treated with level set techniques and approximate Heaviside functions in Section 2.1.

A similar discussion applies to the unknown function u in (14). If v1 or the conductivities Mi,Me,Mo are
discontinuous, then there might not exist any solution u of (14) or this function might only posses a low order
of regularity. However, as will be explained below, by applying smooth approximations of the Heaviside func-
tion in the modeling process of v1 and the conductivities, it follows from standard theory for elliptic PDEs, see
e.g. [9], that there exist a solution u 2 V(B) � H1(B). Note that this also implies that $u is well-behaved
throughout the body B.

Please note that, for the sake of simplicity, we will drop the subscript ‘‘1’’ in v1 and simply let v denote the
transmembrane potential during rest.
Fig. 2. The transmembrane potential v1 during rest generated by the bidomain model.
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2.1. Incorporating ischemia

The purpose of this section is to explain how level set techniques can be used to incorporate the effect of
one, or more, infarctions into the model (14). To this end, let D � H denote the domain occupied by the ische-
mic region(s) in the heart, and recall that during rest
vðxÞ �
a1 for x in D;

a2 for x in H n D:

�
ð16Þ
where a1 = �60 mV and a2 = �90 mV, see (4). From a mathematical point of view, it turns out to be conve-
nient to assume that D is an open set.

As already mentioned above, biological considerations indicate that the interface between the healthy and
damaged tissue in the heart should not be implemented in terms of a jump discontinuity in the membrane
potential v. In realistic models, this interface must be incorporated by a smooth transition zone. To accom-
plish for such an effect, we will throughout this paper use approximations of the Heaviside function G:
GðsÞ ¼
0 for s < 0;

1 for s P 0:

�

More precisely, consider the family of smooth approximations Gs � G, where s is a positive parameter,
GsðsÞ ¼
1 if s > s;

0 if s < �s;
1
2

1þ s
sþ 1

p sin ps
s

� �� �
if jsj 6 s:

8><>: ð17Þ
Then, by introducing a level set function / : H ! R with the property
/ðxÞ < 0 if x 2 D; ð18Þ
/ðxÞ ¼ 0 if x 2 oD; ð19Þ
/ðxÞ > 0 if x 2 H n D; ð20Þ
we may model the transmembrane potential during rest with the formula
v ¼ vð/Þ ¼ vð/; sÞ ¼ a1½1� Gsð/Þ� þ a2Gsð/Þ; ð21Þ
see (16).
For a given domain D, there are of course infinitely many functions / satisfying (18)–(20). We will, as is

usual in the level set literature, define / in terms of the distance to the boundary oD of D:
/ðxÞ ¼ �distðoD; xÞ if x 2 D; ð22Þ
/ðxÞ ¼ 0 if x 2 oD; ð23Þ
/ðxÞ ¼ distðoD; xÞ if x 2 H n D; ð24Þ
where dist(oD,x) is the Euclidean distance between oD and x. There are several, in particular algorithmic, rea-
sons for using functions on form (22)–(24). We will not dwell any further upon this topic, further details can be
found in [28].

The smoothness, as it is represented in v in (21), of the transition zone between the healthy and ischemic
regions is dominated by the parameter s, cf. (17). Furthermore, the derivatives of v1 = v occur at the right
hand side of (14). This means that s plays an important role in the present model. We will return to this issue
in Section 4.

Please note that (17) provides a family {ds}s>0 of approximate Delta functions:
dsðsÞ ¼ G0sðsÞ ¼
0 if jsj > s;
1
2s 1þ cos ps

s

� �� �
if jsj 6 s;

�
ð25Þ
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with derivatives
Table
Condu

Condu

Health
Health
Health
Health
Ischem
Ischem
Ischem
Ischem
d0sðsÞ ¼ G00s ðsÞ ¼
0 if jsj > s;

� p
2s2 sin ps

s

� �
if jsj 6 s;

(
ð26Þ
2.1.1. Conductivities

In the framework presented above, the effect of the ischemia on the extra-cellular potential was included in
our model by assigning the transmembrane potential v the approximately piecewise constant property
expressed in Eq. (21). However, the intra- and extra-cellular conductivities Mi and Me will also depend on
whether or not ischemic tissue is present, see [13] for details. Consequently, this phenomena should ideally
be incorporated into the equations.

In mathematical models of the electrical activity of the heart, the conductivities Mi and Me are typically
defined in terms of spatially dependent matrices. More specifically, in healthy tissue,
M i ¼ rt
iIþ ðrl

i � rt
iÞala

T
l þ ðrn

i � rt
iÞanaT

n ; ð27Þ
M e ¼ rt

eIþ ðrl
e � rt

eÞala
T
l þ ðrn

e � rt
eÞanaT

n ; ð28Þ

where al = al(x) and an = an(x) are vectors incorporating the fiber structure of the myocardium in the longi-
tudinal and transverse directions, respectively, and rl

i, rn
i and rt

i are scalars [35]. According to the bioengineer-
ing literature, the vector functions al and an are independent of whether or not ischemic tissue is present, see
e.g. [10,14]. This is not the case for the parameters rl

i, rn
i and rt

i . They will change in the damaged areas, see
Table 1, leading to different intra- and extra-cellular conductivities in such regions:
Si ¼ ert
iIþ ðerl

i � ert
iÞala

T
l þ ðern

i � ert
iÞanaT

n ; ð29Þ
Se ¼ ert

eIþ ðerl
e � ert

eÞala
T
l þ ðern

e � ert
eÞanaT

n : ð30Þ
Recall that we introduced the symbol D to denote the domain occupied by the ischemic region(s). By apply-
ing the approximate Heaviside function defined in (17), we now may introduce ischemic dependent conduc-
tivities Ki and Ke with the formulas
K ið/Þ ¼ Si½1� Gað/Þ� þM iGað/Þ;
Keð/Þ ¼ Se½1� Gað/Þ� þM eGað/Þ;

ð31Þ
where / is the level set function in (22)–(24). In general a 6¼ s, (see (21)), meaning that the smoothing param-
eters for the conductivities and membrane potentials may be different. Note that
K ið/ðxÞÞ �
SiðxÞ for x in D;

M iðxÞ for x in H n D;

�
ð32Þ
and
Keð/ðxÞÞ �
SeðxÞ for x in D;

M eðxÞ for x in H n D;

�
ð33Þ
provided that a > 0 is small.
1
ctivity values for healthy and ischemic tissues as reported in [10,14]

ctivity Value (in mS/cm)

y intra-cellular longitudinal, rl
i 3.0

y intra-cellular transverse, rt
i 0.31525

y extra-cellular longitudinal, rl
e 2.0

y extra-cellular transverse, rt
e 1.3514

ic intra-cellular longitudinal, erl
i 3.0

ic intra-cellular transverse, ert
i 0.31525

ic extra-cellular longitudinal, erl
e 1.0

ic extra-cellular transverse, ert
e 0.5
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Finally, by putting
1 Tra
on this
Kð/ðxÞÞ ¼
K ið/ðxÞÞ þ Keð/ðxÞÞ; for x in H ;

MoðxÞ; for x in T ;

�
ð34Þ
we may introduce the following modified version of (14): Find u 2 V(B) such that
Z
B
rw � ðKruÞdx ¼ �

Z
H
rw � ðK irvÞdx; 8w 2 V ðBÞ; ð35Þ
where v is the transmembrane potential defined in (21), and Ki and K are defined in (31) and (34), respectively.
Eq. (35) concludes our derivation of the forward problem: Suppose the characteristics of the ischemic

region(s) are known. Then, as explained above, the transmembrane potential, as well as the conductivities,
are approximately given; see (21), (31) and (34). Consequently, the effect of the infarction(s) on the body sur-
face potential may be determined by solving (35) for u, i.e. the impact of the ischemia on the ECG signal dur-
ing rest can be computed. However, we are mainly interested in the associated inverse problem. That is, with
the challenge of how to use measured body surface potentials to determine the position, size and shape of the
ischemic region(s).
3. Identifying ischemia, an inverse problem

Let d denote the measured resting potential at the body surface, i.e. d : oB! R is a given function repre-
senting the available observation data.1 Note that the ischemic area D satisfies
D ¼ fx; /ðxÞ < 0g; ð36Þ

see (22)–(24). Hence, if we can use our observation data d and the model (35) to determine /, then it follows
that the infarcted region(s) can be identified with (36).

Formulas (31), (34) and (21) imply that the conductivities Ki, Ke and K, as well as the membrane potential v,
depend on /. Consequently, the solution u of (35) will also be a function of /, u = u(x;/). We may thus use the
output least squares method to (approximately) identify /:
min
/
kuð/Þ � dk2

L2ðoBÞ ð37Þ
subject to u = u(/) satisfying (35). This infinite dimensional minimization problem is of course hard to solve.
We will thus discretize (37) and handle it by numerical techniques.

Let fN igM
i¼1 denote a set of finite element basis functions defined throughout the heart H, and consider the

discrete level set function
/ðxÞ ¼
XM

i¼1

piN iðxÞ: ð38Þ
With this notation at hand, we may define the following approximation of (37):
min
p1;p2;...;pM

Jðp1; p2; . . . ; pMÞ; ð39Þ
where
Jðp1; p2; . . . ; pMÞ ¼
1

2

Z
oB
½uðx; p1; p2; . . . ; pMÞ � dðxÞ�2 dx: ð40Þ
Throughout this paper, p1,p2, . . . ,pM will be referred to as the infarction parameters. Note that, since u is a
function of /, u depends on p1,p2, . . . ,pM
ditional ECG devices only record the potential at specific locations, referred to as the lead positions. We will not dwell any further
practical aspect of the present problem, and simply assume that the potential is measured at the entire body surface.
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u ¼ uðx; /Þ ¼ uðx; p1; p2; . . . ; pMÞ:

Our next goal is to construct an algorithm suitable for solving (39).

3.1. Differentiation of the cost-functional

Many minimization methods require the partial derivatives of the involved cost-functional. Let us therefore
show how oJ/op1,oJ/op2, . . . ,oJ/opM can be computed efficiently in terms of the adjoint problem approach. To
this end, we will assume that all the involved derivatives exist and are well-behaved, and thus proceed in a
rather formal manner.

Let j 2 {1,2, . . . ,M} be arbitrary. From (40) we find that
oJ
opj

¼
Z

oB
½uðx; p1; p2; . . . ; pMÞ � dðxÞ�upj

ðx; p1; p2; . . . ; pMÞdx: ð41Þ
Note that differentiation of (35) with respect to pj yields
Z
B
rw � ½K 0ð/Þ/pj

ru�dxþ
Z

B
rw � ½Kð/Þrupj

�dx

¼ �
Z

H
rw � ½K 0ið/Þ/pj

rvð/Þ�dx�
Z

H
rw � ½K ið/Þrvpj

ð/Þ�dx; ð42Þ
or
 Z
B
rw � ½Kð/Þrupj

�dx ¼ �
Z

B
rw � ½K 0ð/Þ/pj

ru�dx�
Z

H
rw � ½K 0ið/Þ/pj

rvð/Þ�dx

�
Z

H
rw � ½K ið/Þrvpj

ð/Þ�dx ð43Þ
for all w 2 V(B). If we introduce the operator
aðn;wÞ ¼
Z

B
rw � ½Kð/Þrn�dx for n;w 2 V ðBÞ; ð44Þ
Eq. (43) may be written on the form
aðupj
;wÞ ¼ �

Z
B
rw � ½K 0ð/Þ/pj

ru�dx�
Z

H
rw � ½K 0ið/Þ/pj

rvð/Þ�dx�
Z

H
rw � ½K ið/Þrvpj

ð/Þ�dx ð45Þ
for all w 2 V(B). Furthermore, u 2 V(B) imply that upj
2 V ðBÞ, see (15).

Next, let w denote the solution of the following auxiliary problem: Find w 2 V(B) such that
aðw;wÞ ¼
Z

oB
½uðx; p1; p2; . . . ; pMÞ � dðxÞ�wdx ð46Þ
for all w 2 V(B). By choosing w ¼ upi
in (46) we find from (41) that
oJ
opj

¼ aðupj
;wÞ: ð47Þ
Moreover, (45) and (47) imply that
oJ
opj

¼ �
Z

B
rw � ½K 0ð/Þ/pj

ru�dx�
Z

H
rw � ½K 0ið/Þ/pj

rvð/Þ�dx�
Z

H
rw � ½K ið/Þrvpj

ð/Þ�dx: ð48Þ
Next, from (31) and (34) it follows that
K 0ið/Þ ¼ �Sidað/Þ þM idað/Þ ¼ ðM i � SiÞdað/Þ;
K 0eð/Þ ¼ �Sedað/Þ þM edað/Þ ¼ ðM e � SeÞdað/Þ;

ð49Þ
and
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K 0ð/Þ ¼
K 0ið/Þ þ K 0eð/Þ; for x in H ;

0; for x in T :

�
ð50Þ
Furthermore, from (21) we see that
vpj
ð/Þ ¼ ða2 � a1Þdsð/Þ/pj

; ð51Þ
whereupon
rvpj
ð/Þ ¼ ða2 � a1Þ½rdsð/Þ/pj

þ dsð/Þr/pj
�: ð52Þ
Consequently, inserting (50) and (52) into (48) provides the formula
oJ
opj

¼ �
Z

H
rw � ½M i � Si þM e � Se�dað/Þ/pj

rudx�
Z

H
rw � ½M i � Si�dað/Þ/pj

rvð/Þdx

� ða2 � a1Þ
Z

H
rw � K ið/Þ½rdsð/Þ/pj

þ dsð/Þr/pj
�dx; ð53Þ
where
rdsð/Þ ¼ d0sð/Þr/:
A few comments are in place:

(1) The key point of this analysis is that all the partial derivatives oJ/op1,oJ/op2, . . . ,oJ/opM of J can be
computed by solving a single auxiliary problem on the form (46). If this task was to be accomplished
in terms of finite differences, one would typically have to solve M elliptic forward problems (35) with
slightly perturbed parameters. For large values of M, such an approach would lead to extremely
CPU demanding algorithms, even exceeding the computing power of modern mainframes.

(2) Interestingly, oJ/opj for j = 1,2, . . . ,M is given in terms of integrals over the heart H, see (53). By and
large, the properties of u and w in T = BnH, cf. Fig. 1, do not matter for the computation of the partial
derivatives! In fact, a more detailed analysis would reveal that these partial derivatives are fully deter-
mined by the behavior of the involved functions in the vicinity of the interface oD. This follows from
basic properties of v, see (21), (17), (25) and (26). Our observations are thus in accordance with those
presented in [30].

(3) By assuming that all the involved functions are sufficiently well-behaved, one can show that the classical
form of the adjoint problem (46) reads
r � ½Kð/Þrw� ¼ 0 in B; ð54Þ
Kð/Þrw � n ¼ u� c� d along oB; ð55ÞZ

B
wdx ¼ 0; ð56Þ
where c ¼
R

oBðu� dÞdx.

3.2. An algorithm

Let us now consider the algorithmic aspects of the theoretical considerations presented above. More pre-
cisely, we will define a simple iterative scheme suitable for (approximately) solving (39).

For the sake of convenience, let us introduce the notation
p ¼ ðp1; p2; . . . ; pMÞ
T

for the infarction parameters, cf. (38). Next, let pn ¼ ðpn
1; p

n
2; . . . ; pn

MÞ
T denote the nth approximation of the

solution of (39) generated by our method and define



782 B.F. Nielsen et al. / Journal of Computational Physics 220 (2007) 772–790
/n ¼ /ðpnÞ ¼
XM

i¼1

pn
i N i: ð57Þ
With this notation at hand, we define the following algorithm:

Algorithm 3.1

(1) Choose appropriate values for a and s to use in the approximate Heaviside functions Ga and Gs, cf. (17),
(21) and (31)

(2) Choose a diagonal matrix B = diag(b1,b2, . . . ,bM) to use in step 4(d) below
(3) Choose an initial guess p0 for the infarction parameters
(4) For n = 0,1, . . . until convergence do

(a) Solve (35) for un = u(/n)
(b) Solve (46) for wn = w(/n)
(c) Compute
oJ
opj

ðpnÞ ¼ �
Z

H
rwn � ½M i � Si þM e � Se�dað/nÞ/n

pj
run dx�

Z
H
rwn � ½M i � Si�dað/nÞ/n

pj
rvð/nÞdx

� ða2 � a1Þ
Z

H
rwn � K ið/nÞ½rdsð/nÞ/n

pj
þ dsð/nÞr/n

pj
�dx;
for j = 1, . . . ,M.
(d) Define
pnþ1 ¼ pn � BrJðpnÞ; ð58Þ

where $J(pn) = (oJ/op1(pn), . . . ,oJ/opM(pn))T

This is a Landweber type of scheme, see e.g. [8]. Note that we use a diagonal matrix B instead of a scalar in
step 4(d). This is due to the fact that the size of the partial derivatives {oJ/opj} depend heavily on j. More spe-
cifically, numerical experiments indicate that, in general, oJ/opj is much larger for indices {j} associated with
nodes positioned at the surface oH of the heart H than for internal nodes. In the examples presented in Section
4, B = diag(b1,b2, . . . ,bM) is defined as follows:
bj ¼
b if j is associated with a node inside H ;

boH if j is associated with a node at oH ;

�
ð59Þ
where b > boH > 0 are scalars. Furthermore, b and boH were determined by the trial end error ‘‘method’’.
(Clearly, more advanced optimization techniques, such as e.g. a line-search strategy or (quasi) Newton
schemes, could have been applied to solve (39). However, that topic is beyond the scope of the present paper).

In the examples presented below we use a ‘‘healthy’’ heart, i.e. no ischemia, as the initial guess in Algorithm
3.1. This means that p0

i > 0 for i = 1,2, . . . ,M and hence /0(x) > 0 for all x 2 H, cf. (57). Please note the fol-
lowing: If we had used exact delta functions in Algorithm 3.1, then all the corrections computed in step (4)
would have been zero. Consequently, pn = p0 for n = 1,2,3, . . . However, the approximate delta functions pre-
vent this from happening, and makes it possible to use a ‘‘healthy’’ heart as initial guess.

4. Numerical experiments

This section is devoted to an experimental study of Algorithm 3.1. As mentioned above, we will investigate
the role of the smoothing parameter s used in the approximate Heaviside function Gs, and how noisy data
influences the behavior of our scheme.

All simulations used the 2D geometry shown in Fig. 3(a). The anisotropic cardiac conductivity values are
given in Table 1, and the fiber directions within the heart are depicted in Fig. 3(b). If not specified otherwise,
the computational grid consisted of 18433 nodes (4059 in the heart) and 36448 elements (7488 in the heart).



Fig. 3. The geometry (a) and fiber structure (b) used in the computations.
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In all the experiments the observation data d, cf. (37), was produced by the following procedure:

� An ischemic zone D was ‘‘inserted’’ into the heart H by altering the cell dynamics and conductivities in this
region.
� The bidomain model (1)–(3), using the Winslow et al. cell model [38], was solved.
� The observation data d was set equal to the body surface potential during rest generated by the bidomain

simulation.

This means that the set of equations used to generate synthetic values for d was different from the model
applied to solve the inverse problem. Consequently, so-called ‘‘inverse crimes’’ [5] were avoided. Further
details about bidomain simulations can be found in [35].

In order to apply Algorithm 3.1, appropriate values for the smoothing parameters s and a, cf. Eqs. (17)–
(21) and (27)–(31), must be chosen. This was accomplished in the following way: Let v1 denote the transmem-
brane potential during rest generated by the bidomain model (1)–(3), see Fig. 2, and recall the ‘‘Ansatz’’ (21)
for the function v(/;s) used in the stationary forward model (35). Then we define an ‘‘optimal/feasible’’ value
s* for s by
s� ¼ argmin
s
kvbi � vð/true; sÞkL2ðHÞ; ð60Þ
where /true denotes the level set function associated with the true infarction. Except for the results presented in
Example II below, we used a = s = s* in all our experiments.

As mentioned above, in all the tests we used a ‘‘healthy’’ heart, i.e. no infarction, as initial guess p0 in the
iteration (58).

Example I. In order to illuminate the convergence properties of Algorithm 3.1, we have in Fig. 4 plotted the
true ischemia along with approximations of it generated by 3, 20 and 43 iterations of the scheme. These plots
were generated with noise free observation data d (cases involving noise will be presented in Example III).

According to this figure, only a few iterations are needed to roughly identify the position of the damaged
tissue. And, approximately 20 iterations provide a rather good approximation of the size of the ischemia.
However, the convergence speed seems to slow down considerably after 20 iterations; compare Fig. 4(c) and
(d).

Fig. 5 shows the relative error in the center of mass (CM) of the estimated ischemia and the cost-functional
J, defined in (40), as functions of the number of iteration used in Algorithm 3.1. More precisely, the relative
error in CM is computed according to the formula
jCM of true ischemia� CM of estimated ischemiaj
6:7 cm

; ð61Þ
where 6.7 cm approximately is the cubic root of 300 cm3, which is a typical heart volume.



Fig. 4. The infarction we try to identify is shown in (a). The result obtained with 3, 20, and 43 iterations of Algorithm 3.1 are presented in
figures (b)–(d), respectively.
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Fig. 5. Plots of the relative error in the center of mass (a) and the cost-functional J (b) as functions of the number of iterations in
Algorithm 3.1.
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Fig. 5(a) shows that the least error in the center of mass is reached after 43 iterations; performing more than
43 iterations will only deteriorate our result. On the other hand, the residual, i.e. the value of our cost-
functional J, decreases monotonically with the number of iterations, see Fig. 5(b). These plots thus clearly
illuminate the ill-posed nature of the problem at hand; it is in general ‘‘impossible’’ to compute a sequence of



approximate solutions that will converge towards the true solution, we must be content with ‘‘rather rough’’
estimates of the ischemia. (Note that this is even the case for noise free observation data d



Table 3
Results obtained with noisy observation data dg, where 0 6 g 6 2%

Noise g (%) Discrepancy Manually

Error CM (%) Error area (%) Error CM (%) Error area (%)

0.0 – – 0.7 16.2
0.5 3.0 19.9 1.6 22.7
1.0 4.1 31.0 2.1 27.4
1.5 4.5 38.4 2.9 34.4
2.0 5.0 42.5 3.0 34.1

The table shows averages obtained by running our scheme 20 times for each noise level.
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center of mass (in practical situations such a technique is of course not applicable; it requires detailed
knowledge about the true solution).

The averaging used to generate the numbers presented in Table 3 could be a little dangerous, since in
practical situations only a very limited number of observations are available,2 and certain errors may get
averaged out by computing mean values. Therefore, the worst results among the 20 simulations used to
produce the numbers in Table 3 are presented in Table 4.

According to these tables, the center of mass (CM) is estimated accurately. Except for some of the worst-
case results obtained with the discrepancy principle, the error in the area of the ischemia is approximately one
magnitude larger than the error in the CM. For noise levels g 6 2%, the algorithm correctly recovered the
region in which the infarction occurred (not suggesting any ischemia in positions with healthy tissue). In
average, the discrepancy principle handled this problem fairly nice; compare the columns entitled
‘‘Discrepancy’’ and ‘‘Manually’’ in Table 3. On the other hand, the worst-case results for the CM generated
with this principle are of a surprisingly low quality compared with the averages, see Table 4.

For g P 3% the scheme did not necessary correctly identify the right location of the infarction; in some of
the 20 runs of the algorithm, it thus happened that healthy tissue was incorrectly classified as ischemic regions.
In Table 5 we have consequently included the so-called ‘‘detection rate’’, referring to how many of the 20 runs
that were successful. The errors in the CM and area presented in this table are averages computed from the
successful cases.

In addition to the quantitative issues reported in Tables 3–5, we have also included qualitative results in
Fig. 6. More specifically, this figure shows the true infarction along with typical3 estimates provided by our
algorithm, applying the discrepancy principle to stop the iteration, in the case of 1%, 3% and 5% noise in the
observation data. Note that the size of the ischemia is underestimated. This observation was made in a number
of cases; it seems that the discrepancy principle defines a too strict stopping criteria for our algorithm.
Roughly speaking, this technique works well for identifying the position of the ischemia but not that well for
estimating its size. From a clinical point of view, it is not clear which of these properties that are most
important: The position provides information about which of the arteries that are occluded, whereas the size is
connected to the severity of the disease. This matter should be explored in more detail. However, it is a delicate
issue and deserves a thorough investigation, which is beyond the scope of the present paper.

Based on the results presented in Tables 3–5 and Fig. 6, it seems to be reasonable to conclude that our
scheme is capable of approximately identifying both the position and roughly the size of the damaged tissue,
provided that the noise level is no larger than 3%. This is at least the case for synthetic observation data
produced by the bidomain model and with zero geometrical uncertainties.

Example IV. In Examples I, II, III we used so-called iterative regularization. Many other techniques have
been developed and it would be interesting to test various schemes on our problem. This is a delicate issue
and deserves a thorough investigation. As a first step in this direction, we will now present a few experiments
performed on coarser meshes – i.e. regularization by projection.
2 One might increase the number of observations by measuring the body surface potential during several heart beats and/or by moving
the electrodes at which the recordings are made.

3 Recall that we performed 20 runs for each noise level.



Table 4
Results obtained with noisy observation data dg, where 0 6 g 6 2%

Noise g (%) Discrepancy Manually

Error CM (%) Error area (%) Error CM (%) Error area (%)

0.5 16.1 38.1 3.1 33.7
1.0 13.9 52.3 4.3 49.2
1.5 15.1 78.6 5.5 82.0
2.0 11.3 74.1 5.9 74.1

The table shows the worst results among the 20 experiments used to compute the averages presented in Table 3.

Table 5
Results obtained with noisy observation data dg, where 3 6 g 6 5%

Noise g (%) Error CM (%) Error area (%) Detection rate

3.0 7.8 46.0 19/20
4.0 4.9 59.0 14/20
5.0 8.4 61.0 10/20

Fig. 6. The true ischemia and the estimates of it generated by Algorithm 3.1 with 1%, 3% and 5% Gaussian noise in the observation data.
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In the experiments presented above, the level set function / and the potential u were discretized in terms of
the same mesh on the heart H (using 4059 nodes in H). It is of course possible to reduce the degrees of freedom
for / and thereby strengthen the projective regularization effect. Table 6 shows results obtained in this way.
(The number of nodes reported in this table is the degrees of freedom used to discretize /). These results
indicate that additional regularization tools might improve the performance of our scheme. Not only is the
accuracy in the estimates for the center of mass (CM) and the area of the ischemia better on coarser meshes,
but the number of Landweber iterations needed is significantly reduced. These numbers were generated with



Table 6
Numerical results obtained with various degrees of freedom for the discrete level set function /

# Nodes Error in CM (%) Error in area (%) # Iterations

4059 0.7 16.2 43
1093 0.8 10.9 19
312 0.5 10.3 16

The forward problem for the potential u was solved on the fine grid used in Examples I, II, III.

Fig. 7. The estimates generated with 1093 and 312 degrees of freedom for the level set function /. These figures should be compared with
the true infarction depicted in Fig. 4(a) and the result obtained with 4059 nodes shown in Fig. 4(d).
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noise free observation data, and the iteration process was stopped manually at the minimum error in the CM.
Qualitative information about the performance of our scheme on coarser meshes can be found in Fig. 7, which
should be compared with Fig. 4(a) and (d) (Fig. 4(d) was generated with 4059 degrees of freedom for /).

These experiments indicate rather strongly that the potential u and the level set function / should be
discretized on different meshes. However, involving several grid levels makes the programming more difficult,
and the geometrical properties of the heart put restrictions on how coarse meshes that can be applied. The
design of an ‘‘optimal’’ scheme for handling these issues is an open problem.
5. Summary and conclusions

We have introduced a mathematical framework and an algorithm suitable for identifying ischemic heart
disease. Our approach is based on biological knowledge about the distribution of the transmembrane potential
in the heart during rest, and modern mathematical methods for PDEs. More specifically, since the transmem-
brane potential is approximately piecewise constant during rest, taking one value in damaged tissue and a dif-
ferent one in the healthy region, it is possible to apply level set techniques to incorporate the effect of an
ischemia on simulated ECG recordings.

Based on these observations, we formulated an inverse problem, with the level set function as the unknown,
for identifying heart infarctions from ECG measurements. This lead to a minimization problem for a suitable
cost-functional subject to a constraint expressed in terms of an elliptic PDE. To approximately solve this
minimization problem, we applied the Landweber scheme. This method requires the partial derivatives of
the cost-functional, which we computed with the adjoint problem approach. It is the use of the dual problem
that makes our algorithm fast, and consequently might making it applicable in practical situations. In 2D our
scheme requires 15–40 iterations and hence 2–3 min wall time on a standard laptop4 running the Linux oper-
ating system.

Through a series of numerical experiments in 2D, using a heart in torso geometry with a realistic fiber struc-
ture, we illuminated both qualitative and quantitative properties of our algorithm. It turned out that the
4 We performed our experiments on an IBM ThinkPad T40.
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scheme was not very sensitive with respect to the smoothing parameter used in the level set framework. More-
over, for synthetic observation data generated by full bidomain simulations, we managed, provided that the
noise level was less or equal to 3%, to roughly recover the position and size of the ischemia. However, whether
this scheme is applicable in clinical situations is still unclear; 3D simulations, preferable with real world data,
must be undertaken, and uncertainties regarding various geometrical aspects must be investigated.
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